Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There has been an increase in recognition of the important role that the boundary layer turbulent flow structure has on wake recovery and concomitant wind farm efficiency. Most research thus far has focused on onshore wind farms, in which the ground surface is static. With the expected growth of offshore wind farms, there is increased interest in turbulent flow structures above wavy, moving surfaces and their effects on offshore wind farms. In this study, experiments are performed to analyze the turbulent structure above the waves in the wake of a fixed-bottom model wind farm, with special emphasis on the conditional averaged Reynolds stresses, using a quadrant analysis. Phase-averaged profiles show a correlation between the Reynolds shear stresses and the curvature of the waves. Using a quadrant analysis, Reynolds stress dependence on the wave phase is observed in the phase-dependent vertical position of the turbulence events. This trend is primarily seen in quadrants 1 and 3 (correlated outward and inward interactions). Quantification of the correlation between the Reynolds shear stress events and the surface waves provides insight into the turbulent flow mechanisms that influence wake recovery throughout the wake region and should be taken into consideration in wind turbine operation and placement.more » « less
-
A model for the structure function tensor is proposed, incorporating the e↵ect of anisotropy as a linear perturbation to the standard isotropic form. The analysis extends the spectral approach of Ishihara et al. (2002) to physical space based on Kolmogorov’s theory and is valid in the inertial range of turbulence. Previous results for velocity co-spectra are used to obtain estimates of the model coe"cients. Structure functions measured from direct numerical simulations of channel flow and from experimental measurements in turbulent boundary layers are compared with predicted behaviour and reasonable agreement is found. We note that power-law scaling is more evident in the co-spectra than for the mixed structure functions. New observations are made about countergradient correlation between Fourier modes of wall normal and streamwise velocity components for wavenumbers approaching the Kolmogorov scale.more » « less
-
Numerical simulations present challenges because they generate petabyte-scale data that must be extracted and reduced during the simulation. We demonstrate a seamless integration of feature extraction for a simulation of turbulent fluid dynamics. The simulation produces on the order of 6 TB per timestep. In order to analyze and store this data, we extract velocity data from a dilated volume of the strong vortical regions and also store a lossy compressed representation of the data. Both reduce data by one or more orders of magnitude. We extract data from user checkpoints in transit while they reside on temporary burst buffer SSD stores. In this way, analysis and compression algorithms are designed to meet specific time constraints so they do not interfere with simulation computations. Our results demonstrate that we can perform feature extraction on a world-class direct numerical simulation of turbulence while it is running and gather meaningful scientific data for archival and post analysis.more » « less
An official website of the United States government
